Loading...
News Article

CEA-Leti Clears Path to low Loss High-Power Photonics

News

Si3N4 200mm platform targets designers in integrated quantum optics, LiDAR, biosensing, and imaging

Leti, an institute of CEA-Tech in France, has developed a Si3N4 200mm platform for developing ultralow loss, high-power photonics in UV through mid-infrared wavelengths. Available in CEA-Leti’s SiN platform in a multi-project-wafer program, the breakthrough targets designers in integrated quantum optics, LiDAR, biosensing, and imaging whose projects require ultralow propagation losses and high-power handling capability.

Announced at Photonics West 2020, this ultralow-loss SiN layer is available for multi-level photonic circuits. It can be combined with a heater layer and a silicon layer in a unique platform to integrate passive and active components, such as Mach-zehnder interferometers (MZI), multi-mode interferometers (MMI), ring resonators, filters, arbitrary waveform generators (AWG), modulators and photodiodes. This ultralow-loss layer can also present a local opening for biosensing applications.

“Companies requiring III-V/SiN laser cointegration or working on integrated quantum photonics for communication and computing applications can use this unique capability to combine those ultralow-loss properties with high thickness SiN in a CMOS-compatible photonics platform,” said Eléonore Hardy, business developer at CEA-Leti. “This breakthrough process will contribute to the Quantum 2.0 revolution and will lead to photonic devices that actively create, manipulate, and read out quantum states for the emergence of quantum computing, imaging, sensing, communication, and clocks.”

The best-in-class performance obtained with an 800-nm thick SiN layer includes a two times reduction in propagation loss with three decibels per meter (3 dB/m) for high-confinement 1.6µm-wide strip waveguides across the S, C, and L optical-wavelength bands. CEA-Leti researchers also improved aging in the photonics devices and produced high-Q photonic microresonators with quality factors approaching 107 across the C band and reduced feature size.

Deposition of SiN uses CEA-Leti’s high-quality twist-and-grow, low-pressure chemical vapor deposition (LPCVD) technique that deposits relatively thick, pure, and stoichiometric SiN with good thickness uniformity, unlike standard chemical vapor deposition techniques. Furthermore, a multistep chemical-physical annealing smoothed the sidewall roughness of SiN waveguides, which further decreased propagation losses.

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: